Decomposing spatiotemporal brain patterns into topographic latent sources

نویسندگان

  • Samuel Gershman
  • David M. Blei
  • Kenneth A. Norman
  • Per B. Sederberg
چکیده

This paper extends earlier work on spatial modeling of fMRI data to the temporal domain, providing a framework for analyzing high temporal resolution brain imaging modalities such as electroencapholography (EEG). The central idea is to decompose brain imaging data into a covariate-dependent superposition of functions defined over continuous time and space (what we refer to as topographic latent sources). The continuous formulation allows us to parametrically model spatiotemporally localized activations. To make group-level inferences, we elaborate the model hierarchically by sharing sources across subjects. We describe a variational algorithm for parameter estimation that scales efficiently to large data sets. Applied to three EEG data sets, we find that the model produces good predictive performance and reproduces a number of classic findings. Our results suggest that topographic latent sources serve as an effective hypothesis space for interpreting spatiotemporal brain imaging data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A topographic latent source model for fMRI data

We describe and evaluate a new statistical generative model of functional magnetic resonance imaging (fMRI) data. The model, topographic latent source analysis (TLSA), assumes that fMRI images are generated by a covariate-dependent superposition of latent sources. These sources are defined in terms of basis functions over space. The number of parameters in the model does not depend on the numbe...

متن کامل

Brain connectivity at different time-scales measured with EEG.

We present an overview of different methods for decomposing a multichannel spontaneous electroencephalogram (EEG) into sets of temporal patterns and topographic distributions. All of the methods presented here consider the scalp electric field as the basic analysis entity in space. In time, the resolution of the methods is between milliseconds (time-domain analysis), subseconds (time- and frequ...

متن کامل

Making sense of sparse rating data in collaborative filtering via topographic organization of user preference patterns

We introduce topographic versions of two latent class models (LCM) for collaborative filtering. Latent classes are topologically organized on a square grid. Topographic organization of latent classes makes orientation in rating/preference patterns captured by the latent classes easier and more systematic. The variation in film rating patterns is modelled by multinomial and binomial distribution...

متن کامل

Making Cognitive Latent Variables Manifest: Distinct Neural Networks for Fluid Reasoning and Processing Speed

Cognitive psychologists posit several specific cognitive abilities that are measured with sets of cognitive tasks. Tasks that purportedly tap a specific underlying cognitive ability are strongly correlated with one another, whereas performances on tasks that tap different cognitive abilities are less strongly correlated. For these reasons, latent variables are often considered optimal for descr...

متن کامل

Introducing a Star Topology into Latent Class Models for Collaborative Filtering

Latent class models (LCM) represent the high dimensional data in a smaller dimensional space in terms of latent variables. They are able to automatically discover the patterns from the data. We present a topographic version of two LCMs for collaborative filtering and apply the models to a large collection of user ratings for films. Latent classes are topologically organized on a “star-like” str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 98  شماره 

صفحات  -

تاریخ انتشار 2014